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1. Executive summary

(1) The primary recommendation of this white paper is image modeling, that is,

fitting to the pixel values downlinked from the Kepler satellite a quantitative description of

pixel sensitivities (flat-field), point-spread function (PSF), and sky, bias, and dark signals,

all as a function of focal-plane position. This kind of modeling has not been required for

Kepler so far because its aperture-photometry precision has been maintained through point-

ing stability. The degraded pointing precision in two-wheel operations will be a blessing as

well as a curse: It reduces the precision of aperture photometry, but it provides diversity

that permits inference of the detector sensitivity map and PSF. We propose developing

a probabilistic generative model of the Kepler pixels. We argue that this may per-

mit continuance of photometry at 10-ppm-level precision. We demonstrate some baby steps

towards precise models along both data-driven (flexible) and physics-driven (interpretably

parameterized) directions. We demonstrate that the expected drift or jitter in positions in

the two-weel era will help enormously with constraining calibration parameters. In partic-

ular, we show that we can infer the device flat-field at higher than pixel resolution; that is,

we can infer pixel-to-pixel variations in intra-pixel sensitivity. These results are relevant to

almost any scientific goal for the repurposed mission; image modeling ought to play a role

no matter what. We have several secondary recommendations:

(2) It will be imperative to operate the spacecraft with modifications to tables or soft-

ware: Either the pointing will need to be adjusted frequently using the two operational

wheels and some propellant; or else the telemetered focal-plane apertures will have to be

enlarged; or else the apertures will have to be adapted in real time to follow drifting stars.

(3) It will be wise to perform deliberate focus pulls, dithers, and integration-time adjust-

ments; these will provide much more data support for hard-to-constrain calibration param-

eters. These calibration observations will improve any two-wheel data but will also improve

the precision of the extant Kepler data that we expect contains many undiscovered signals.

(4) It is our view that Kepler ought to continue work on what many of the present

authors consider its key scientific goal, which is to continue to find Earth-like planets

on year-ish orbits around Sun-like stars. With a multi-pronged image-modeling effort

and a bit of good luck (with respect to assumptions about spacecraft hardware and data-

modeling software), it is our view that in the next few years Kepler can do even more than

it already has on this deep and important mission. That said, what’s written in this white

paper is fundamentally agnostic about the scientific program in the two-wheel era.
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2. Philosophy and motivation

The Kepler satellite—like other very precise time-domain photometric projects—

achieves its precision by keeping the camera and telescope exquisitely controlled and stable,

leading to identical conditions for each observation. This strategy has yielded large numbers

of planets in a wide range of sizes and periods.

In the two-wheel era, it will not be possible to make each observation as identical to

the fiducial observation as it was in the three- and four-wheel eras.1 The imprecise pointing

introduces, into any description of the data, three unknown functions of time (that is, the

three solid-body Euler angles). These three Euler-angle functions affect–in a predictable

way—every single one of the hundreds of thousands of detectable stars in the camera field of

view, each of which affects the intensity field touching a few to many pixels. Therefore the

photometry can be used to constrain these three functions, which are sampled at different

value during each exposure; indeed, there is an overwhelming abundance of information in

the data to constrain these three functions.

While it is obvious in principle that we can infer the intra-exposure s/c pointing and

orientation history,2 and thus potentially brightness variations of stars limited only by photon

noise, we cannot perform a convincing test with the existing Kepler data. Recovery of precise

photometry from a source that is moving across the focal plane requires knowledge of not just

the pointing but the device geometry and sensitivity (flat-field) at the pixel level (or probably

at even higher resolution), along with the point-spread function (PSF) and its variations with

time and position. When—as with Kepler—all data have been taken at rigidly fixed pointing,

it is hard (or maybe impossible) to obtain independent data-supported models of the PSF

and the flat-field, let alone any intra-pixel sensitivity variations or pixel-level additive signals

(like bias or dark currents). That is, Kepler data are taken in a mode that is near-pessimal3

for the determination of calibration parameters.

1See, for example, the Call for White Papers: Soliciting Community Input for Alternate Science Investi-

gations for the Kepler Spacecraft (http://keplergo.arc.nasa.gov/docs/Kepler-2wheels-call-1.pdf)

and the Explanatory Appendix to the Kepler Project call for white papers: Kepler 2-Wheel Pointing Control

(http://keplergo.arc.nasa.gov/docs/Kepler-2-Wheel-pointing-performance.pdf).

2Indeed inference of non-trivial intra-exposure camera pointing trajectories has been demonstrated in

the far more difficult case of single-exposure “natural” images (meaning ordinary personal photographs of

everyday scenes; Fergus et al. 2006; Whyte et al. 2010; Hirsch et al. 2011; Köhler et al. 2012). That is, the

three-axis history of camera orientation path can be reliably inferred in an individual image, without even

multiple exposures to use and no knowledge of the details of the “true scene”. Relative to these situations,

the Kepler problem is a walk in the park! That said, the precision requirements of Kepler science are much

more challenging than those of natural image de-blurring.

3Neologism “pessimal” is the antonym of “optimal”.

http://keplergo.arc.nasa.gov/docs/Kepler-2wheels-call-1.pdf
http://keplergo.arc.nasa.gov/docs/Kepler-2-Wheel-pointing-performance.pdf
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In the demonstrations that follow, we will show that there is great promise for recovery or

determination of precise calibration information in the two-wheel era. This white paper does

not deliver an air-tight proposal for obtaining 10-ppm photometric precision. It attempts

only to point the way towards extremely precise modeling, something which should be a

part of any future scientific program with the degraded satellite. The key idea is that

the drift of the stars across the CCD provides precisely the data we need to determine the

calibration functions. A multi-pronged image modeling effort along the lines outlined here is

almost certain to deliver large information gains to any future (or even past) Kepler science

program at comparatively low cost.

The death of Kepler’s second wheel (taking it down to two) occurred at a tragic moment:

The mission is on track to discover Earth-like planets orbiting Sun-like stars on year-ish

(habitable-zone) orbits, and for such targets, five or six years is a lot better than four.

Indeed, when signals are sparse, statistical significance (as estimated by, say, a p-value) can

grow much faster than any small power of mission lifetime.4 It is our view that discovery

and characterization of exoplanets is so important, it should remain Kepler’s top priority.

Additional data collected with two-wheel Kepler could significantly enhance the number and

fidelity of Earth-analog-candidates discovered by Kepler (and also be extremely valuable for

Kepler’s other science goals). With this in mind, we advocate using methods of image

modeling to retain or approximate three-wheel photometric precision in an era of two-wheel

pointing degradation. If that is possible—and we think it will be—we would recommend

continuing work along the direction of Kepler’s core mission, which (in our view) is to

continue finding and characterizing Earth analogs and other habitable-zone oceany rocks.

Of course the two-wheel mode will bring other challenges, like possible hard constraints

on field choice, changes to exposure time or cadence, and changes to flight tables or software

that selects pixel regions for downlink. For all these reasons, we might have to observe

fewer stars in the two-wheel era. Since Kepler’s mission so far has taught us a lot about

the variability properties of stars, the prevalence of rocky planets around different kinds of

stars, and the brightness limits of transit searching at different transit depths and durations,

it is our view that it will be possible to design a program that will deliver large payloads

of new and important planetary systems, and all relevant to the Earth-analog question. We

present some of these scientific proposals in a separate, companion white paper (Montet

et al.), because although we specifically happen to love eta-Earth, what we say here about

image modeling is equally applicable to any two-wheel repurpose for the Kepler satellite.

Right now, all of Kepler’s spine-tingling precision has been obtained by peforming rigid

integer-pixel aperture photometry on flat-fielded and background-subtracted image data.

4We thank Ben Weiner (Arizona) for this insight.
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Furthermore, only something like half of the downlinked pixels are used in the apertures,

and every pixel that is used is used with identical weight. That is, there is no “optimal

extraction” or “PSF photometry” being used to combine the corrected pixel data; the PSF

model is used only to determine optimized photometric apertures. Another motivation for

and value of the work we present here will be in the exploitation of the existing data. In

some sense, one of the proposals we are making is to use the two-wheel era to generate

the calibration data we need to fully exploit the existing data. Again, this calibration

activity could bring enormous scientific value to the Kepler community no matter what the

repurposed mission.

One final point of philosophy: All of the code used to make the demonstrations in this

white paper is available in open-source or at least publicly readable repositories on the web.5

We encourage the Kepler community to fork, build on, and contribute back to these code

bases.

3. Data-driven modeling

In this white paper, we sketch several methods for modeling both existing Kepler data

and simulated 2-wheel observations. The discussion here should be viewed as an illustration

of potentially interesting data analysis techniques and not as a definitive (or even fully-

formed) argument. That being said, the preliminary results seem promising. The methods

that we explore fall into two main categories: data-driven models and physically motivated

generative models. We will start by describing some data-driven methods in this section

and then demonstrate some toy examples of generative modeling in the subsequent sections.

In this section, we draw on expertise in the fields of machine learning, causal inference

and computer vision to propose non-parametric models for systematics removal in existing

Kepler observations. Most 2-wheeled observing strategies will amplify existing systematics.

With this in mind, it is clear that improving the precision of techniques used to analyze

existing data will likely be applicable to the data taken in suboptimal operational modes.

Some of the basic ideas in our discussion of data-driven modeling should sound familiar to

Kepler experts because the PDC techniques employed by the core data reduction pipeline

5Our toy future-data simulation—and code for physical modeling thereof—is at http://astrometry.

net/svn/trunk/projects/kepler/; it is a sub-project of our general image-modeling framework called

“The Tractor” (Hogg & Lang 2013, Lang & Hogg 2014), which is at http://theTractor.org/. Our data-

driven modeling code is at https://github.com/dfm/causal-kepler. Code to build physical models of the

pixels in the extant Kepler data is at https://github.com/dfm/kpsf. Our Python wrapping of the MAST

interface to the Kepler data is at https://github.com/dfm/kplr, and most of our probabilistic inference

involves ensemble sampling with emcee (Foreman-Mackey et al. 2013), which is at http://dan.iel.fm/

emcee. This white paper itself was developed and lives at https://github.com/davidwhogg/SaveKepler.

http://astrometry.net/svn/trunk/projects/kepler/
http://astrometry.net/svn/trunk/projects/kepler/
http://theTractor.org/
https://github.com/dfm/causal-kepler
https://github.com/dfm/kpsf
https://github.com/dfm/kplr
http://dan.iel.fm/emcee
http://dan.iel.fm/emcee
https://github.com/davidwhogg/SaveKepler
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are excellent examples of this type of model.

3.1. Predicting pixels with pixels

The PDC algorithms (Stumpe et al. 2012; Smith et al. 2012) are particularly successful

because they remove instrumental effects (assumed common between nearby targets on the

detector) while retaining astrophysical signals (assumed unique to the target of interest).

These methods use a data-driven linear model built directly from the aperture photometry

of nearby stars; that is, they operate on coadded pixel values, not individual pixels.

Here, we present a demonstration in the form of an extension to this model that explicitly

takes advantage of the causal structure of the problem (CITE SOMETHING). We also argue

that this procedure is best performed at the pixel level instead of on the extracted photometric

time series. To start, we describe a model to remove systematic effects from the time series in

a single pixel using the fluxes of pixels from some K ≥ 1 nearby star(s) and the “historical”

time series of the target pixel. The main insight of this method is that the systematic effects

are actually predictable based on the history of the system and not just on the current state.

In other words, the (recent) history (and possibly the future) of the detector sensitivity, as

encoded in large numbers of pixel histories, provides a better estimate of the conditions at

a given moment than an instantaneous measurement considered alone.

In this section, we will discuss the calibration of pixel i of target star n at time tk using

the pixels i′ on target m 6= n in the sliding window tk − δt ≤ tk′ ≤ tk + δt.

We start by making the (reasonable) assumption that the observed signal—the flux

measured in pixel i at time tk: yi(tk)—is a function of only the “true” flux fi(tk) arriving at

the location of pixel i during the integration time, bulk variations caused by the conditions of

the spacecraft (for example, pointing shifts and temperature fluctuations) that affect every

pixel in a systematic—but not identical—way, and instrumental noise due to the detector.

The goal is to find (or model) the true fluxes fi(tk) conditioned on the observations yi(tk).

In practice, this is hard because we don’t have a physical model accurate at the required

levels. Instead, we propose an effective model based on the observations described above.

Our method relies on assumptions of “independence” and “join confounding”. Indepen-

dence (motivated by Reichenbach’s principle; Reichenbach 1956): we assume that the true

fluxes are independent: fi(tk) ⊥⊥ fi′(tk′) for all i 6= i′ We also assume there may be additional

observables (for example, temperature) for which this independence holds. It is important

to note here that we are only considering pixels i′ from a different star than the star targeted

by the pixel i. Joint confounding : we assume that any confounding effect on yi(tk) will also

affect a number of other values yi′(tk′) (where i 6= i′ and tk′ is not necessarily equal to tk).

This means that the overall systematic affecting yi(tj) can (in principle) be predicted from

from the other yi′(tk′).
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The idea behind our approach is that if we now try to predict a measurement yi(tk) from

variables known to be independent of fi(tk) (the true flux), then whatever we can predict has

nothing to do with fi(tk). The statistical dependence we find must, by Reichenbach’s prin-

ciple, be due to joint confounders that affect both our measurement and the other variables

we are using to predict it.

For simplicity, we assume that the systematic confounders affect the signal additively

(although it may be possible to generalize the method). Under this assumption, the model

can be written as

yi(tk) = fi(tk) +
∑
i′, k′

ci′ k′ yi′(tk′) . (1)

Since (by our independence assumption) fi(tk) ⊥⊥ yi′(tk′), the vector of coefficients c can be

computed using using standard linear least-squares techniques on the system in equation 1,

treating fi(tk) as the noise term.

To demonstrate this method, we applied equation 1 to the quarter 9 observations of

Kepler-20, a G-type star with 5 known transiting exoplanets (Gautier et al. 2012). The

results are shown in the top panel of Figure 1. To generate this Figure, we downloaded the

target pixel files from MAST6 using kplr7 and computed the vector c for each pixel using

the pixel time series from the two nearest stars on the detector as the basis. The result

shown in the top panel of Figure 1 is the result of coadding the time series using the optimal

aperture provided by the Kepler photometry module. It is instructive to compare this to

the PDC result (shown in the bottom panel of Figure 1) to see that we achieve similar

stellar variability signatures and preserve the transit signal. We have not yet performed any

quantitative comparison of these two methods but the fact that we were able to achieve

qualitatively competitive performance without exploiting the full flexibility of this kind of

model is very promising.

3.2. Autoregressive generalization

The model discussed in the previous section should retain any true astrophysical signals

because there is no physical mechanism that would induce correlations between these signals

in different targets. Suppose that we are only interested in temporally compact astrophysical

signals—exoplanet transits, for example. In this case, we can substantially improve the

predictive power of the model by using information from the (recent) history of the pixels

6The Mikulski Archive for Space Telescopes; http://archive.stsci.edu/

7http://dan.iel.fm/kplr

http://archive.stsci.edu/
http://dan.iel.fm/kplr
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targeting the star that we are trying to model. That is, by using not just pixels from other

stars, but using pixels from (an appropriately chosen) time-window in past history of the

current star, we can model not just the instrumental variations but also the stellar variations,

without messing up the transits.

In this case, observations of the target of interest are independent of observations of

other stars for times tk′ , where |tk − tk′ | > ∆ and ∆ is longer than the maximum duration

of a transit. This independence assumption has a physical interpretation: in addition to all

the above independences, the flux of a planet-hosting star is independent of planet position

(except in rare cases of close-in planets that produce phase variations, Esteves et al. 2013).

Therefore, the light arriving from the star system contains no information about the transit

signal except while the planet is in front of (or behind) the star. This can be viewed as an

assumption of independence of the stellar limb darkening profile and the geometric mech-

anism by which the star-planet system “converts” the star brightness into an observable

brightness of the joint system. This kind of assumption has recently studied in the field of

causal inference (Janzing & Schölkopf 2010).

To demonstrate this method, we preformed an autoregressive fit to the same data as

discussed in the previous section (quarter 9; Kepler-20). The results of this fit are shown in

the middle panel of Figure 1. The difference between this and the previous demonstration

is that, in this case, a 2.5 hour window is included from the pixels in the Kepler-20 aperture

∆ = 12 hours before and after the target time are included in the basis. This model removes

most of the stellar variability in the light curve without significantly reducing the transit

signal. Again, we do not yet have a sound quantitative argument demonstrating the power

of this method but a robust detrending algorithm applied at the pixel level could be extremely

valuable and these results show promise.

3.3. Deep learning

In contrast to the linear conditional models outlined above, we also recommend exploring

a range of highly non-linear models for the same task. While many of the confounding

signals will be linear-ish, the residuals will contain non-linear factors in the system that

might obscure the transit signal. To leave only the transit signal in the residual, these non-

linear but unknown factors much be captured with a more powerful model. This can be

done using Deep Learning approaches that have recently proven very successful for complex

image domain tasks such as object recognition (Krizhevsky et al. 1998).

The Deep Learning models we intend to apply in this instance will be a convolutional

neural network (CNN), similar in spirit to the LeNet architecture (LeCun et al. 1998). This

model is a multi-layered (hence “deep”) and has special connectivity structure so that each

unit in a layer examines only a small window of the previous one (rather than all units).
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Each layer computes a convolution of the feature map from the previous layer (a 2D map)

with a learned filter and then the result is passed through a non-linear function. Models

with many layers can capture highly non-linear structure of the input image, since each unit

in a higher layer is connected to the input by multiple non-linear functions. We recommend

three approaches:

(1) Spatial-only : In this model, we just attempt to model the spatial structure within

a single 2D image. The input will be a set of stars around a pixel whose brightness we

wish to predict (the immediately surrounding pixels will be masked). The output will be

the brightness of the aforementioned pixel. When trained on a set of 2D images, taken at

different times, the early layers of the model might be expected to learn the PSF, while the

higher layers will learn the dependencies between the brightnesses of stars (which should just

be from confounding sources).

(2) Temporal-only : The drawback to the spatial-only model is that it cannot capture

the temporal dependencies in the data. Instead, we can take as input time series from pixels

(centers of nearby stars, say) and the time series of the star of interest as output. The

LeNet model architecture uses 2D convolutions, applied to a 2D input image. This must

be modified to have a 1-D convolution in the time direction, but fully connected across the

pixels. The size of the convolutional window dictates the amount of “history” the model can

use for prediction.

(3) Spatio-temporal : This combines the above models and allows spatial and temporal

structure to be learned. The input is a 3D sequence of images, with 3D convolutional filters

used to produce 3D feature maps. The output will be sequence of patches, containing the

star of interest over time.

All three models will use data split into three disjoint sets for training, validation and

testing, all screened to avoid any transits where possible. Selecting the appropriate model

architecture (number of layers, number of feature maps per layer) is an unsolved problem in

machine learning, thus can only be done by training a range of different model variants and

selecting the best using the validation set. If the model is too large it will have too much

capacity, thus overfit the training set. Conversely, a small model will not have sufficient

power to predict the target star with enough fidelity to reveal the transit.

4. Physical modeling

Data-driven models of the types described above can work because the relationships

between the different data flowing from the system (telemetered pixel values, in this case) are

determined by an underlying set of physical devices (s/c, optics, detectors, and electronics, in

this case), each of which is deterministic or stationary or at least predictable probabilistically.

Data-driven models have the advantage of flexibility—we don’t have to decide in advance
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exactly what freedoms to give the model—but they have the disadvantage that they don’t

represent all of our prior beliefs about what can happen and why. For these reasons, it is

worth thinking about physical models. In a physical model, we build highly parameterized

models of the s/c attitude, PSF, flat-field (and possibly intrapixel sensitivity), and DC

signals. These are compared with the data probabilistically, through a likelihood function.

For the purposes of demonstrating the physical modeling direction, in this part of the white

paper we use simulated Kepler data to demonstrate feasibility. As with the previous Section,

the demonstrations and discussions here are designed to be illustrative; we have not yet

proven that 10 ppm precision is straightforwardly obtained by these methods.

4.1. Toy simulation and modeling

Motivated by what we call the “371-roll scenario”8 we produced a series of toy (that is,

unrealistic in various ways) simulated 30-minute coadd images with ∼ half-pixel drift and

1-arcsec jitter. Drift and jitter were simulated by moving the boresight of the simulated

telescope every 6 seconds during the integration. An aperture is examined around a single

target, where the aperture is large enough to contain the full drift path of the target over

the 24-hour observing window. (This may be an over-optimistic assessment of what can

be downlinked.) The input (true) positions and brightnesses of the stars in the simulation

are taken from the Kepler Input Catalog. The input (true) PSF is a very much simplified

double-Gaussian. Variations are introduced in the (true, toy) flat-field, drawn pixelwise iid

from a Gaussian with 1 percent standard deviation. We produced a series of 48 simulated

coadds, corresponding to one day’s observations between rolls.

In order to simplify the modeling task, in addition to the science exposure we rendered a

“perfect”, bright, isolated, noise-free star with an unperturbed flat-field. The star is drifted

and jittered in each coadd identically with the full science field. This ideal star is used to

independently learn (fit, estimate) the PSF model in each coadd. For a PSF model we use a

very simple mixture of 4 Gaussians. That is we used a different model to generate the data

than we used to fit the data, which is conservative and realistic in this context. The fake

PSF-determination data and a model of it are visualized in Figure 2.

After learning a PSF model for each image, we infer the brightness of each source

in the field. It is assumed that we have the true source positions from the Kepler Input

Catalog (the same positions used to produce the simulations, that is, truth), and the multi-

Gaussian model of the drift-path-wrecked PSF. This model is unrealistic because we have

8More-or-less the most stable pointing option for the Kepler Field according to the Explanatory Appendix

to the Kepler Project call for white papers: Kepler 2-Wheel Pointing Control (http://keplergo.arc.nasa.

gov/docs/Kepler-2-Wheel-pointing-performance.pdf).

http://keplergo.arc.nasa.gov/docs/Kepler-2-Wheel-pointing-performance.pdf
http://keplergo.arc.nasa.gov/docs/Kepler-2-Wheel-pointing-performance.pdf
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only considered a single PSF and only two-dimensional field shifts in generating the PSF;

in reality there would be a model of the PSF over the field and three degrees of freedom to

the s/c drift model (pointing and orientation). The toy data and models are visualized in

Figure 3.

After fitting for the brightness of each source, we estimate the flat-field. This is estimated

simply by taking the geometric mean (over the 48 images) of the ratio of the model to

simulated images. That is, we find a pixelwise flat-field that will make our pixel-by-pixel

models best match the observations. (This method is overly naive; we could do better

in principle with simultaneous modeling.) The true and recovered flat-fields are shown in

Figure 4. We do a good job of recovering the flat-field.

4.2. Inferring an intrapixel flat-field

Next, we tested whether there is any chance within these toy simulations that we could

recover a sub-pixel sensitivity map; that is, is it possible to constrain the flat-field at an

angular resolution higher than the read-out data? The simulations are similar to the above,

except this time the simulated images were produced on a pixel grid of twice the true

resolution, and we randomly generated a flat-field with this same resolution. After scaling the

double-resolution by the double-resolution flat-field, the images were binned down (summed)

2×2 to produce images at the detector read-out resolution, but now with sub-pixel variations

in the sensitivity. In this simple version then, each pixel has 4 “zones” of different sensitivity.

Using our modeling framework, it is straightforward to infer such a double-resolution

flat-field given the normal-resolution images. As when producing the simulations, the model

images are rendered at twice the resolution and scaled by a model (parameterized) flat-field

(that has four times as many parameters as there are device pixels) before binning and

comparing with the observed images. As in the previous experiment, we first solve for a PSF

model, then solve for the brightness of each source, then solve for the (double-resolution) flat

field. That is, we stay in the fit–fit–fit mode rather than performing simultaneous inference

of the three components, which should in the end perform better. In this version, the best-fit

flat-field is determined by iteratively solving a linearized least-squares problem: Starting at

a constant flat-field, changes to the flat-field pixels are computed that will minimize the

difference between the model (predicted) images and the observed images. As before, we

fit simultaneously a stack of 48 images, each a 30-minute coadd. In this experiment, the

stars drift horizontally across the field, and some regions do not see many stars during the

exposure. To avoid numerical overfitting, we added a prior on the flat-field values, with the

same variance as the distribution from which the true flat-field was drawn (σ = 2 percent).

The results—shown in Figures 5 and 6—are that we can successfully recover a sub-pixel

flat-field (sensitivity map), especially in regions that are jointly constrained by having stars
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drift through. In other words, the quality of the intrapixel flat recovery is a strong function

of the history of detector illumination, but it is better where we need it to be better (on the

stars). This experiment used only 48 exposures, while in practice we would likely attempt to

infer a finer sensitivity map over a much larger number of exposures: likely months or more

of observations. The degraded pointing and drift of Kepler in two-wheel mode is actually a

boon here, since it increases the diversity of stars that touch different combinations of pixels.

These experiments justify great optimism about the prospects for modeling

the Kepler data in the two-wheel era. They also show that the drift is not just a curse

but also a blessing: The movement of target stars over the device permits determination of

very detailed instrument calibration information.

4.3. Photometry and modeling

Here we demonstrate in an extreme toy example that precise image modeling can fa-

cilitate and improve photometry. To this end we first simulate high-resolution PSFs for

both Kepler’s nominal and two-wheel operation era. As in the experiment above, we use a

simplified two component Gaussian PSF model and assume jitter, normally distributed with

a standard deviation of 1 arcsec. While in the previous experiment we assumed a minimal

drift in the “371-roll scenario”, here we work with a much larger drift of 1.4 deg in 4 days as

described in the call9, which adds up to a total drift length of 27 arcsec for a 30 min coadd.

This extreme example is designed to maximize the observable impact of modeling.

Again, drift and jitter were simulated by moving the boresight of the simulated telescope

every 6 seconds during a total integration time of 30 minutes. The left panel of Figure 7 shows

4x higher-resolved images of the generated PSFs at a resolution of 0.995 arcsec. The panel

right next to it shows the convolved and noisy simulated images of two stars with variable

brightness, approximately 25 arcsec apart. The resolution is at Kepler’s native pixel scale of

3.98 arcsec. Noise was simulated by drawing iid from a Gaussian with a standard deviation

of 150 e− assuming a dynamic range of 1.1× 106 e− Gilliland et al. (2011). For model fitting

we assume knowledge of both the star positions (for real data provided by Kepler’s Input

Catalog) and PSF. The third and fourth columns of Figure 7 show the model images and

their corresponding differences when compared to the simulated images.

Table 1 summarizes the photometric results of our model fitting approach and compares

them with the results of optimal aperture averaging. The values reported in Table 1 have

been averaged over 100 noise realisations and suggest that image modeling does improve

over simple aperture photometry even in Kepler’s two-wheel era. Note that the footprints

of stars separated less than the drift length within a coadd, will overlap in general (which

9http://keplergo.arc.nasa.gov/docs/Kepler-2wheels-call-1.pdf

http://keplergo.arc.nasa.gov/docs/Kepler-2wheels-call-1.pdf
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is the case in our toy example). In this case it is no longer possible to define an aperture

that would allow for high-precision photometry, such that aperture photometry won’t work

for nearby stars (with a distance less than the drift length per coadd). In contrast, our

modeling approach is still able to yield photometric information with a higher accuracy than

aperture photometry in the nominal case! The slight loss in accuracy and precision suggests

that a smaller drift is in general preferable, which could be accomplished by shorter exposure

times. However, there is tradeoff to be explored between smaller drift and lower SNR through

shorter exposure times (also see our discussion on exposure time in Section 5).

4.4. PSF modeling

We have shown (above) that fitting images with a good PSF provides better photometry

than aperture photometry. What we can’t show just yet is that the PSF will be comprehen-

sible or known at the requisite precision. This represents a very important challenge for the

data-processing side of two-wheel Kepler operations.

Drift will cause the PSF to vary from exposure to exposure due to the random nature

of the jitter introduced by the pointing inaccuracy of the spacecraft. While previously, due

to stable pointing, the jitter contributed to the Kepler’s optical PSF in form of an enlarged

PSF, in the two-wheel era jitter will render the PSF to change from exposure to exposure.

Therefore, we believe that precise PSF modeling is required on an individual exposure level

to maintain high-precision photometry.

The PSF in two-wheel mode can be decomposed in two distinct components: one that

describes Kepler’s (unchanged) system PSF and a second component that describes the

global motion/drift of the spacecraft during exposure.

For modeling the former, previous Kepler data is invaluable, which will tie up on the

work of Bryson et al. (2010) and allow a precise model of Kepler’s instrument PSF with

the help of a detailed analysis of the temporal stability of Kepler’s pixel response function

(PRF). While in Bryson et al. (2010) only isolated non-saturated star images recorded dur-

ing Kepler’s commissioning phase have been used to build a model of Kepler’s PRF as a

piecewise-continuous polynomial on a sub-pixel mesh, in principle any non-saturated star

images from the Kepler Input Catalog can be used. In general more data will facilitate the

estimation and at the same time improve modeling accuracy as demonstrated in Magain

et al. (2007).

The second PSF component is stemming from spacecraft motion/drift and is affecting

the image in a globally consistent way. Hence, with precise knowledge of the detector’s

geometry and its possibly time and space-varying PRF, all star images from an individual

exposure will help to constrain this (to some extent unkown) motion. Any additional knowl-

edge about the spacecraft’s pointing position will facilitate the estimation process. Note,
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that for an individual exposure we can be agnostic about the chronology and temporal evo-

lution, as we are interested in its time integrated effect on the image only. The incorporation

of a geometric model allowing for physically plausible motion only has been applied with

great success to the problem of camera shake removal with non-stationary blur within the

computational photography and computer vision community recently (Fergus et al. 2006;

Whyte et al. 2010; Hirsch et al. 2011; Köhler et al. 2012).

Although from an image-processing perspective all necessary tools are readily available

and have proven extremely successful in a number of non-trivial imaging applications re-

cently, PSF modeling with high-precision photometric accuracy is a non-trivial task. At the

same time this is a promising and exciting direction to be explored for existing Kepler data

and two-wheel data in the future.

5. Changes to operations

Here are some thoughts about operational changes, relevant to image modeling.

exposure times: In the pointing-stability best-case 371-roll scenario, the long cadence

of 30-min exposures can be continued without change.10 If the science program obviates

the 371-roll, then exposure times might have to get shorter. In a worst-case scenario—of

either a failure of the 371-roll predictions, or else requirements that make it impossible to

implement—we advise setting exposure times to obtain something close to 1 pixel of jitter

or drift during the exposure. Much less than this, and the exposures are “over-resolving”

the jitter (thereby wasting telemetry bandwidth) Much more than this, and the angular

resolution and PSF estimation is likely to degrade in ways that affect photometric precision.

One interesting consequence of sticking with the Kepler Field and shortening exposure times

is that the mission could deliver better information about transit-timing variations, transit-

duration variations, and asteroseismology.

telemetry of pixels: Even in the 371-roll scenario, stars drift steadily across the focal

plane, requiring either much larger apertures to be downlinked, or else adaptive aperture

control from exposure to exposure.11 The former comes at telemetry bandwidth cost, the

10We note also that the 371-roll scenario maintains the s/c in a very stable thermal environment, which

may simplify many aspects of calibration.

11All scenarios considered in the Explanatory Appendix assume that the two remaining wheels will be used

to correct disturbance torques about the Z and Y axes. The wheel orientations are such that any Y-correction

will induce a roll about the X axis; optimal scenarios minimize Y disturbance torques. Boresight roll will

result in variable drift across the detector, but has minimal impact on the analysis described above.
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latter at satellite table or software upgrade cost. From an image-modeling perspective, we

don’t have a position on this; if anything the larger apertures are good, because more pixels

equals more calibration information. From a scientific perspective, we much prefer a change

to flight tables or software; bandwidth is valuable.

target list: Exposure time shortening or aperture enlarging will require more telemetry

bandwidth per target star. If necessary, we recommend shrinking the target list around

two parent populations: One is M stars, where small, habitable-zone planets seem to be

abundant. The other is G stars, where only true Earth-analogs can live (and true Jupiter

analogs). Some of these issues are addressed in greater detail in our companion white paper

(Montet et al.). In principle a lot is now known about the detectability of interesting planets

as a function of stellar variability patterns. This knowledge is also valuable for shrinking

target lists.

telemetry of housekeeping data: Because recovery of pointing history is so important

to image modeling, it makes sense to telemeter down housekeeping data from the satellite

fine guidance sensors and tracking and pointing software. We suspect that even maximal

downlink of pointing-related housekeeping data (s/c thermal and star tracker HK, the latter

ideally at 5 Hz) is tiny compared to the scientific data. If so—and if it is not already being

downlinked—we would recommend making the relevant changes to subscribe to these HK

data.

calibration observations: The image modeling in our demonstration projects (above) is

successful because there are data spanning a wide range of conditions (temperature condi-

tions in the data-driven modeling example and pointing conditions in the toy simulations).

There is no reason to stop at the data diversity delivered by the stochastic forces of So-

lar insolation. In specified calibration periods—or more radically throughout the two-wheel

mission—it makes sense to pull the focus (if possible), dither the pointing deliberately (if

software permits), and exercise the exposure time control. These changes will give vital

calibration information about the PSF, the flat-field, and the DC signals. In the end, the

self-calibration provided by modeling the science data might be sufficient. But if or where

it isn’t, a small amount of calibration data can be enormously valuable.

6. Acknowledgments

It is a pleasure to thank Sameer Agarwal (Google) and Keir Mierle (Locu) for releasing

the Ceres non-linear least squares solver (https://code.google.com/p/ceres-solver/)

and for making suggestions that enabled this work. We benefitted from useful conversations

https://code.google.com/p/ceres-solver/


– 16 –

with and assistance from Ross Fadely (NYU), Malte Kuhlmann (MPI-IS), Hans-Walter Rix

(MPIA), and Ben Weiner (Arizona). DWH, RF, and DFM are all partially supported by

NSF grant IIS-1124794. MH acknowledges support from the European Research Council in

the form of a Starting Grant with number 240672. BTM is supported by the NSF Graduate

Research Fellowship grant DGE-1144469.

REFERENCES

Bryson, S. T., Tenenbaum, P., Jenkins, J. M., et al., 2010, The Kepler Pixel Response

Function, ApJ, 713 L97

Esteves, L. J., De Mooij, E. J. W., Jayawardhana, R., et al., 2013, Optical Phase Curves of

Kepler Exoplanets, ApJ, 772 51E

Fergus, R., Singh, B., Hertzmann, A., Roweis, S. T., Freeman, W. T., 2006, Removing

camera shake from a single image, ACM Transactions on Graphics (SIGGRAPH

2006)

Foreman-Mackey, D., Hogg, D. W., Lang, D., & Goodman, J., 2013, emcee: The MCMC

Hammer, PASP, 125, 306

Gautier, T. N., III, Charbonneau, D., Rowe, J. F., et al., 2012, Kepler-20: A Sun-like Star

with Three Sub-Neptune Exoplanets and Two Earth-size Candidates ApJ, 749, 15

Gilliland, R. L., Chaplin, W. J., Dunham, E. W., et al., 2011, Kepler mission stellar and

instrument noise properties, ApJ, 197, 1

Hirsch, M., Schuler, C. J., Schölkopf, B., & Harmeling, S., 2011, Fast removal of

non-uniform camera shake, IEEE International Conference on Computer Vision

(ICCV 2011)

Hogg, D. W. & Lang, D., 2013, Replacing standard galaxy profiles with mixtures of

Gaussians, PASP, 125, 719

Janzing, D. & Schölkopf, B., 2010, Causal inference using the algorithmic Markov

condition, IEEE Transactions on Information Theory, 56, 5168

Krizhevsky, A., Sutskever, I., & Hinton, G.E., 2012, ImageNet Classification with Deep

Convolutional Neural Networks, Neural Information Processing Systems (NIPS

2012)



– 17 –

LeCun, Y., Bottou, L., Bengio, Y., & Haffner, P., 1998, Gradient-Based Learning Applied

to Document Recognition, Proceedings of the IEEE, 86, 2278
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Fig. 1.— Results of our data-driven pixel-level systematics model applied to the quarter

9 observations of Kepler-20 and compared to the PDC light curve. (top) The basic model

(equation 1) applied to the pixel time series. This Figure shows the results of coadding

the residuals (fi(tk) in equation 1) using the optimal aperture from the Kepler pipeline.

(middle) The same as the top panel using an autoregressive model (with ∆ = 12 hours).

(bottom) The results of doing simple aperture photometry and then running PDC on the

extracted light curve.
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Fig. 2.— Toy simulated two-wheel Kepler PSF-determination data and models. (left) “Per-

fect” (that is, extremely high signal-to-noise) PSF simulated image, shown on a log scale

with a dynamic range of 106. These simulations were made with a simple PSF model but

then 371-roll-level drift and jitter in s/c pointing. (middle) Model maximum-likelihood

PSFs. These are 4-component Gaussian mixtures (23 parameters total); that is, the model

used to fit the PSF lives in a different space than the model used to generate the toy data.

(right) PSF-model residuals. The stretch is ±10−4.
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Fig. 3.— Toy simulated two-wheel simulated science data (left) and models (right). The

model images are created by fitting the amplitude of a (rigidly fit) PSF model for each image,

and thereby inferring the brightness of each source. The three images shown are the first,

middle, and last images in a 48-image sequence in the 371-roll scenario.
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Fig. 4.— Toy simulated true flat-field (top left) and point-estimation thereof (top right),

found by taking ratios of models to data after fitting the drifted, effective PSF and brightness

of every source in the field. The true flat-field in the image has Gaussian variation with

1 percent standard deviation. We estimated the flat-field with the pixel-wise ratio between

the model image and data.
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Fig. 5.— Three toy images from the simulated data with 2× 2 sub-pixel 2-percent flat-field

variations, and the coadd of all 48 toy images, showing the 371-roll drift and the coverage of

this field patch by stars.
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Fig. 6.— Demonstration that we can fit the intrapixel flat—a flat-field with multiple param-

eters per pixel—at least in principle. True sub-pixel flat-field, estimated sub-pixel flat-field,

and residuals. These objects have four times as many parameters as pixels in each of the

48 individual simulated data read-outs. Because of the regularization we added to avoid

overfitting, regions that did not see a fairly bright star are relatively poorly constrained and

therefore tend to keep the flat-field near unity, and tend to fit original-sized pixel blocks.

Regions through which bright stars drift are much better constained and very closely ap-

proximate the true flat field. In practice, we would likely fit much larger series of images

(months or more), rather than the 48-exposure series used here, so performance could in

principle become excellent.
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Fig. 7.— Two-star toy example to demonstrate that precise image modeling can facilitate

and improve photometry over aperture photometry. The stars are approximately 25 arcsec

apart. From left to right : high-resolution PSFs (4× higher-resolved, that is, at a resolution

of 0.995 arcsec), noisy coadds, model and difference images (at Kepler’s nominal resolution

of 3.98 arcsec). In the simulation and model images the dynamic stretch is 106, in the

difference image 5 ∗ 102. The top row shows the case for nominal operation with functional

reaction wheels, the bottom row shows the case in the two-wheel era with an evident drift of

27 arcsec for a 30 min exposure in the worst case scenario (cp. http://keplergo.arc.nasa.

gov/docs/Kepler-2wheels-call-1.pdf). The red frame depicted in the observed image

in the top panel shows the optimal (in the sense of least error) aperture used for aperture

photometry.

Nominal operation Relative error (×10−4)

Aperture averaging 21.50± 10.35

Modeling approach 5.55± 3.00

Two-wheel operation

Modeling approach 8.21± 4.46

Table 1: Photometric results for the toy example shown above (Figure 7). The PSF modeling

approach improves photometric accuracy over aperture averaging even in the two-wheel era

with a drift as large as 27 arcsec for a 30 min exposure. For averaging optimal apertures have

been used (exemplary one is depicted as red frame in the top panel in the Figure above).

Note, that in the drift case the footprints of the two stars overlap, such that photometric

measurement is not possible by simple aperture photometry.

http://keplergo.arc.nasa.gov/docs/Kepler-2wheels-call-1.pdf
http://keplergo.arc.nasa.gov/docs/Kepler-2wheels-call-1.pdf
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